Topological transitions in two-dimensional lattice spin models

Silvano Romano*
Unità di Ricerca CNISM e Dipartimento di Fisica "A. Volta," Universitá di Pavia, via A. Bassi 6, I-27100 Pavia, Italy (Received 3 November 2005; revised manuscript received 13 February 2006; published 5 April 2006)

Abstract

A family of classical statistical-mechanical spin models, by now extensively studied in the literature, involves two-component unit vectors, associated with a two-dimensional lattice, with pair potentials restricted to nearest neighbors and possessing $O(2)$ symmetry-i.e., defined by some function of the scalar product between the two interacting spins; these studies often show the existence of a topological phase transition. We show here that, for a wide class of interaction models of the above type, available mathematical results entail the existence of a topological (Berezinskiǐ-Kosterlitz-Thouless-like) transition, as well as a rigorous lower bound on the transition temperature.

DOI: 10.1103/PhysRevE.73.042701

INTRODUCTION

A family of classical statistical-mechanical spin models, by now extensively studied in the literature, involves twocomponent unit vectors, associated with a two-dimensional lattice, with pair potentials restricted to nearest neighbors and possessing $O(2)$ symmetry-i.e., defined by some function of the scalar product between the two interacting spins; these studies often show the existence of a topological phase transition. The simplest, prototypical case involves a ferromagnetic (odd) interaction proportional to (minus) the scalar product and leads to the well-known Berezinski1̆-KosterlitzThouless (BKT) transition [1-3]; other functional forms of the interaction, sometimes of different parity, have been studied as well (see, e.g., Refs. [4-6]) and often found to produce a similar topological transition; the even counterparts have been investigated in connection with nematogenic models [6].

The purpose of the present Brief Report is to show that, for a wide class of interaction models of the above type, the available mathematical results entail the existence of a Berezinskiĭ-Kosterlitz-Thouless-like transition, as well as a rigorous lower bound on the transition temperature.

MATHEMATICAL RESULTS

Trigonometric identities involving Legendre polynomials [7] are quoted here for future reference:

$$
\begin{gather*}
P_{2}(\cos \tau)=\frac{1}{4}[3 \cos (2 \tau)+1] \tag{1}\\
P_{4}(\cos \tau)=\frac{1}{64}[35 \cos (4 \tau)+20 \cos (2 \tau)+9] . \tag{2}
\end{gather*}
$$

As for symbols, let us consider a classical planar rotator or $X Y$ model, consisiting of two-component unit vectors \mathbf{u}_{k} associated with a D-dimensional (hypercubic) lattice and parametrized by polar angles ϕ_{k}; let \mathbf{x}_{k} denote the coordinates

[^0]of their lattice sites; their interaction potentials are taken to be translationally invariant, restricted to nearest-neighboring pairs of sites and of the general form
\[

$$
\begin{equation*}
\Delta=\Delta_{j k}=f\left(\cos \phi_{j}, \cos \phi_{k}, \sin \phi_{j}, \sin \phi_{k}\right) \tag{3}
\end{equation*}
$$

\]

where f is symmetric with respect to the exchange of the two sites j and k, and sufficiently regular, say a continuous function of its arguments (in the following, it will be specialized to a trigonometric polynomial); let m denote an arbitrary positive integer, and let

$$
\begin{equation*}
E_{m}=f\left(\cos \left(m \phi_{j}\right), \cos \left(m \phi_{k}\right), \sin \left(m \phi_{j}\right), \sin \left(m \phi_{k}\right)\right) \tag{4}
\end{equation*}
$$

so that $\Delta=E_{1}$; it has been shown that interaction models defined by the same functional form f but different values of m produce the same partition function, hence the same thermodynamic properties; moreover, their structural properties can be defined in a way independent of $m[8,9]$.

The interaction potential is now taken to have a generalized ferromagnetic polynomial form, isotropic in spin space:

$$
\begin{equation*}
\Phi=\epsilon c_{0}-\epsilon \sum_{l=1}^{l=M} a_{l} \cos \left[l\left(\phi_{j}-\phi_{k}\right)\right] \tag{5}
\end{equation*}
$$

here, ϵ is a positive quantity, setting temperature and energy scale (i.e., $T^{*}=k_{B} T / \epsilon$), and all the coupling constants a_{l} are non-negative, with $a_{1}>0$ and $a_{M}>0$. Let A denote the finite set of constants $\left\{a_{l}\right\}$, and let b denote their maximum value; notice also that, by the above mentioned mapping [8,9], an interaction model

$$
\begin{equation*}
\Psi_{m}=\epsilon c_{0}-\epsilon \sum_{l=1}^{l=M} a_{l} \cos \left[\operatorname{lm}\left(\phi_{j}-\phi_{k}\right)\right] \tag{6}
\end{equation*}
$$

is equivalent to Φ; the choice $m=2$ defines a nematogenic interaction.

Two special cases of the previous equations (5) and (6) are

$$
\begin{equation*}
W_{1}=-\epsilon \cos \left(\phi_{j}-\phi_{k}\right), \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
W_{2}=-\epsilon P_{2}\left[\cos \left(\phi_{j}-\phi_{k}\right)\right], \tag{8}
\end{equation*}
$$

which are equivalent to within a temperature rescaling; similarly, an interaction model of the form

$$
\begin{equation*}
W_{4}=-\epsilon P_{4}\left[\cos \left(\phi_{j}-\phi_{k}\right)\right] \tag{9}
\end{equation*}
$$

(i.e., within numerical factors, the model studied in Ref. [6]) is equivalent to

$$
\begin{equation*}
W_{2}^{\prime}=-\frac{5}{64} \epsilon\left\{4 \cos \left(\phi_{j}-\phi_{k}\right)+7 \cos \left[2\left(\phi_{j}-\phi_{k}\right)\right]\right\} \tag{10}
\end{equation*}
$$

Notice also that, by standard trigonometric identities [7], interaction models of the form [4]

$$
\begin{equation*}
U_{n}=-\epsilon \cos ^{n}\left(\phi_{j}-\phi_{k}\right), \quad n \in \mathbb{N}, \quad n>2, \tag{11}
\end{equation*}
$$

are special cases of Eqs. (5) and (6) as well.
At sufficiently high temperature (when $D=3$) or possibly at all finite temperatures (when $D=1,2$), the above models produce orientational disorder and the susceptibilty in the disordered region, for a (hypercubic) sample consisting of $V=L^{D}$ spins, is defined by $[10,11]$

$$
\begin{equation*}
\chi_{2}=\frac{1}{V} \beta\langle\mathbf{F} \cdot \mathbf{F}\rangle, \quad \mathbf{F}=\sum_{k=1}^{V} \mathbf{u}_{k}, \quad \beta=1 / T^{*} ; \tag{12}
\end{equation*}
$$

thus,

$$
\begin{equation*}
\chi_{2}=\beta\left[1+(2 / V) \sum_{p<q} \Gamma_{p q}\right], \quad \Gamma_{p q}=\left\langle\cos \left(\phi_{p}-\phi_{q}\right)\right\rangle . \tag{13}
\end{equation*}
$$

The Ginibre inequalities [12-14] entail that, at all temperatures,

$$
\begin{equation*}
\frac{\partial \Gamma_{p q}}{\partial a_{l}} \geqslant 0 \tag{14}
\end{equation*}
$$

i.e., for models defined by Eq. (5) all correlation functions $\Gamma_{p q}$, and hence the susceptibility χ_{2}, are monotonically increasing functions of all positive couplings a_{l}.

When $D=1,2$, the Mermin-Wagner theorem and its generalizations entail that all models defined by Eq. (5) [or, in more general terms, by a continuous function of the scalar product $\cos \left(\phi_{j}-\phi_{k}\right)$ [15]] produce no orientational longrange order in the thermodynamic limit and at all finite temperatures; on the other hand, when $D=2$, the model W_{1} was rigorously proven to support the BKT transition [16], with an estimated transition temperature $\Theta_{1}=0.8929$ (see, e.g., Ref. [17]). Therefore, when $D=2$, all models defined by Eq. (5) support a transition to a low-temperature phase whose slow decay of correlations to zero results in infinite susceptibility [this situation is also called quasi-long-range order (QLRO)]; this is a BKT-like transition, which, in turn, can even become a first-order transition, as proven in Refs. [18,19], where references to previous simulation evidence can be found.

Let $\Theta(A)$ now denote the BKT-like transition temperature for the model defined by a given set A of positive coupling constants; then, $\Theta(A)$ is also a monotonically increasing function of all the couplings and the following lower bound holds:

$$
\begin{equation*}
\Theta(A) \geqslant b \Theta_{1} . \tag{15}
\end{equation*}
$$

For the model investigated by simulation in Ref. [6], the right-hand side of this inequality yields $\frac{35}{55} \Theta_{1} \approx 0.56$; the transition temperature estimated there is $\Theta=0.7226$ and satisfies the bound. Transition temperatures were calculated by simulation in Ref. [5] and for models defined by $-1<\delta<0$ [corresponding to $M=2, a_{1}=1$, and $a_{2}=-\delta / 2$, in the notation of Eq. (5)]; they satisfy the corresponding lower bound as well, now defined by $b=1$, and show the expected increase with decreasing δ.

To summarize, available mathematical results define a wider context, with which some recent papers [4-6] can be fruitfully linked.
[1] P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).
[2] S. W. Pierson, Philos. Mag. B 76, 715 (1997).
[3] Z. Gulácsi and M. Gulácsi, Adv. Phys. 47, 1 (1998).
[4] M. S. Li and M. Cieplak, Phys. Rev. B 47, 608 (1993).
[5] B. V. Costa and A. S. T. Pires, Phys. Rev. B 64, 092407 (2001).
[6] A. I. Fariñas-Sánchez, R. Paredes, and B. Berche, Phys. Rev. E 72, 031711 (2005).
[7] A. Jeffrey, Handook of Mathematical Formulas and Integrals, 2nd ed. (Academic Press, London, 2000).
[8] H.-O. Carmesin, Phys. Lett. A 125, 294 (1987).
[9] S. Romano, Nuovo Cimento Soc. Ital. Fis., B 100, 447 (1987).
[10] Th. T. A. Paauw, A. Compagner, and D. Bedaux, Physica A 79, 1 (1975).
[11] P. Peczak, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B

43, 6087 (1991).
[12] J. Ginibre, Commun. Math. Phys. 16, 310 (1970).
[13] J. Glimm and A. Jaffe, Quantum Physics, a Functional Integral Point of View (Springer, Berlin, 1981).
[14] G. A. Baker, Jr., Quantitative Theory of Critical Phenomena (Academic Press, Boston, 1990).
[15] D. Ioffe, S. B. Shlosman, and Y. Velenik, Commun. Math. Phys. 226, 433 (2002).
[16] J. Fröhlich and T. Spencer, Commun. Math. Phys. 81, 527 (1981).
[17] M. Hasenbusch, J. Phys. A 38, 8659 (2005).
[18] A. C. D. van Enter and S. B. Shlosman, Phys. Rev. Lett. 89, 285702 (2002).
[19] A. C. D. van Enter and S. B. Shlosman, Commun. Math. Phys. 255, 21 (2005).

[^0]: *Electronic address: Silvano.Romano@pv.infn.it

